The Complexity of Recognizing Facets for the Knapsack Polytope (2211.03311v2)
Abstract: The complexity class DP is the class of all languages that are the intersection of a language in NP and a language in co-NP, as coined by Papadimitriou and Yannakakis (1982). Hartvigsen and Zemel (1992) conjectured that recognizing a facet for the knapsack polytope is DP-complete. While it has been known that the recognition problems of facets for polytopes associated with other well-known combinatorial optimization problems, e.g., traveling salesman, node/set packing/covering, are DP-complete, this conjecture on recognizing facets for the knapsack polytope remains open. We provide a positive answer to this conjecture. Moreover, despite the DP-hardness of the recognition problem, we give a polynomial time algorithm for deciding if an inequality with a fixed number of distinct positive coefficients defines a facet of a knapsack polytope, generalizing a result of Balas (1975).