Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-GPU thermal lattice Boltzmann simulations using OpenACC and MPI (2211.03160v2)

Published 6 Nov 2022 in physics.flu-dyn, cs.CE, and physics.comp-ph

Abstract: We assess the performance of the hybrid Open Accelerator (OpenACC) and Message Passing Interface (MPI) approach for multi-graphics processing units (GPUs) accelerated thermal lattice Boltzmann (LB) simulation. The OpenACC accelerates computation on a single GPU, and the MPI synchronizes the information between multiple GPUs. With a single GPU, the two-dimension (2D) simulation achieved 1.93 billion lattice updates per second (GLUPS) with a grid number of $8193{2}$, and the three-dimension (3D) simulation achieved 1.04 GLUPS with a grid number of $385{3}$, which is more than 76% of the theoretical maximum performance. On multi-GPUs, we adopt block partitioning, overlapping communications with computations, and concurrent computation to optimize parallel efficiency. We show that in the strong scaling test, using 16 GPUs, the 2D simulation achieved 30.42 GLUPS and the 3D simulation achieved 14.52 GLUPS. In the weak scaling test, the parallel efficiency remains above 99% up to 16 GPUs. Our results demonstrated that, with improved data and task management, the hybrid OpenACC and MPI technique is promising for thermal LB simulation on multi-GPUs.

Citations (27)

Summary

We haven't generated a summary for this paper yet.