Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Clustering above Exponential Families with Tempered Exponential Measures (2211.02765v1)

Published 4 Nov 2022 in cs.LG

Abstract: The link with exponential families has allowed $k$-means clustering to be generalized to a wide variety of data generating distributions in exponential families and clustering distortions among Bregman divergences. Getting the framework to work above exponential families is important to lift roadblocks like the lack of robustness of some population minimizers carved in their axiomatization. Current generalisations of exponential families like $q$-exponential families or even deformed exponential families fail at achieving the goal. In this paper, we provide a new attempt at getting the complete framework, grounded in a new generalisation of exponential families that we introduce, tempered exponential measures (TEM). TEMs keep the maximum entropy axiomatization framework of $q$-exponential families, but instead of normalizing the measure, normalize a dual called a co-distribution. Numerous interesting properties arise for clustering such as improved and controllable robustness for population minimizers, that keep a simple analytic form.

Citations (5)

Summary

We haven't generated a summary for this paper yet.