Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Weisfeiler and Leman go Hyperbolic: Learning Distance Preserving Node Representations (2211.02501v2)

Published 4 Nov 2022 in cs.LG

Abstract: In recent years, graph neural networks (GNNs) have emerged as a promising tool for solving machine learning problems on graphs. Most GNNs are members of the family of message passing neural networks (MPNNs). There is a close connection between these models and the Weisfeiler-Leman (WL) test of isomorphism, an algorithm that can successfully test isomorphism for a broad class of graphs. Recently, much research has focused on measuring the expressive power of GNNs. For instance, it has been shown that standard MPNNs are at most as powerful as WL in terms of distinguishing non-isomorphic graphs. However, these studies have largely ignored the distances between the representations of nodes/graphs which are of paramount importance for learning tasks. In this paper, we define a distance function between nodes which is based on the hierarchy produced by the WL algorithm, and propose a model that learns representations which preserve those distances between nodes. Since the emerging hierarchy corresponds to a tree, to learn these representations, we capitalize on recent advances in the field of hyperbolic neural networks. We empirically evaluate the proposed model on standard node and graph classification datasets where it achieves competitive performance with state-of-the-art models.

Citations (6)

Summary

We haven't generated a summary for this paper yet.