Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
92 tokens/sec
Gemini 2.5 Pro Premium
50 tokens/sec
GPT-5 Medium
32 tokens/sec
GPT-5 High Premium
30 tokens/sec
GPT-4o
67 tokens/sec
DeepSeek R1 via Azure Premium
91 tokens/sec
GPT OSS 120B via Groq Premium
452 tokens/sec
Kimi K2 via Groq Premium
190 tokens/sec
2000 character limit reached

Inexact Proximal-Gradient Methods with Support Identification (2211.02214v1)

Published 4 Nov 2022 in math.OC

Abstract: We consider the proximal-gradient method for minimizing an objective function that is the sum of a smooth function and a non-smooth convex function. A feature that distinguishes our work from most in the literature is that we assume that the associated proximal operator does not admit a closed-form solution. To address this challenge, we study two adaptive and implementable termination conditions that dictate how accurately the proximal-gradient subproblem is solved. We prove that the number of iterations required for the inexact proximal-gradient method to reach a $\tau > 0$ approximate first-order stationary point is $\mathcal{O}(\tau{-2})$, which matches the similar result that holds when exact subproblem solutions are computed. Also, by focusing on the overlapping group $\ell_1$ regularizer, we propose an algorithm for approximately solving the proximal-gradient subproblem, and then prove that its iterates identify (asymptotically) the support of an optimal solution. If one imposes additional control over the accuracy to which each subproblem is solved, we give an upper bound on the maximum number of iterations before the support of an optimal solution is obtained.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube