Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distributed DP-Helmet: Scalable Differentially Private Non-interactive Averaging of Single Layers (2211.02003v2)

Published 3 Nov 2022 in cs.CR, cs.LG, and stat.ML

Abstract: In this work, we propose two differentially private, non-interactive, distributed learning algorithms in a framework called Distributed DP-Helmet. Our framework is based on what we coin blind averaging: each user locally learns and noises a model and all users then jointly compute the mean of their models via a secure summation protocol. We provide experimental evidence that blind averaging for SVMs and single Softmax-layer (Softmax-SLP) can have a strong utility-privacy tradeoff: we reach an accuracy of 86% on CIFAR-10 for $\varepsilon$ = 0.4 and 1,000 users, of 44% on CIFAR-100 for $\varepsilon$ = 1.2 and 100 users, and of 39% on federated EMNIST for $\varepsilon$ = 0.4 and 3,400 users, all after a SimCLR-based pretraining. As an ablation, we study the resilience of our approach to a strongly non-IID setting. On the theoretical side, we show that blind averaging preserves differential privacy if the objective function is smooth, Lipschitz, and strongly convex like SVMs. We show that these properties also hold for Softmax-SLP which is often used for last-layer fine-tuning such that for a fixed model size the privacy bound $\varepsilon$ of Softmax-SLP no longer depends on the number of classes. This marks a significant advantage in utility and privacy of Softmax-SLP over SVMs. Furthermore, in the limit blind averaging of hinge-loss SVMs convergences to a centralized learned SVM. The latter result is based on the representer theorem and can be seen as a blueprint for finding convergence for other empirical risk minimizers (ERM) like Softmax-SLP.

Summary

We haven't generated a summary for this paper yet.