Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sub-network Multi-objective Evolutionary Algorithm for Filter Pruning (2211.01957v1)

Published 22 Oct 2022 in cs.NE, cs.AI, and cs.CV

Abstract: Filter pruning is a common method to achieve model compression and acceleration in deep neural networks (DNNs).Some research regarded filter pruning as a combinatorial optimization problem and thus used evolutionary algorithms (EA) to prune filters of DNNs. However, it is difficult to find a satisfactory compromise solution in a reasonable time due to the complexity of solution space searching. To solve this problem, we first formulate a multi-objective optimization problem based on a sub-network of the full model and propose a Sub-network Multiobjective Evolutionary Algorithm (SMOEA) for filter pruning. By progressively pruning the convolutional layers in groups, SMOEA can obtain a lightweight pruned result with better performance.Experiments on VGG-14 model for CIFAR-10 verify the effectiveness of the proposed SMOEA. Specifically, the accuracy of the pruned model with 16.56% parameters decreases by 0.28% only, which is better than the widely used popular filter pruning criteria.

Summary

We haven't generated a summary for this paper yet.