Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Physics-inspired machine learning for power grid frequency modelling (2211.01481v1)

Published 2 Nov 2022 in eess.SY, cs.SY, and physics.data-an

Abstract: The operation of power systems is affected by diverse technical, economic and social factors. Social behaviour determines load patterns, electricity markets regulate the generation and weather-dependent renewables introduce power fluctuations. Thus, power system dynamics must be regarded as a non-autonomous system whose parameters vary strongly with time. However, the external driving factors are usually only available on coarse scales and the actual dependencies of the dynamic system parameters are generally unknown. Here, we propose a physics-inspired machine learning model that bridges the gap between large-scale drivers and short-term dynamics of the power system. Integrating stochastic differential equations and artificial neural networks, we construct a probabilistic model of the power grid frequency dynamics in Continental Europe. Its probabilistic prediction outperforms the daily average profile, which is an important benchmark. Using the integrated model, we identify and explain the parameters of the dynamical system from the data, which reveals their strong time-dependence and their relation to external drivers such as wind power feed-in and fast generation ramps. Finally, we generate synthetic time series from the model, which successfully reproduce central characteristics of the grid frequency such as their heavy-tailed distribution. All in all, our work emphasises the importance of modelling power system dynamics as a stochastic non-autonomous system with both intrinsic dynamics and external drivers.

Citations (1)

Summary

We haven't generated a summary for this paper yet.