Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Experimental superposition of time directions (2211.01283v3)

Published 2 Nov 2022 in quant-ph

Abstract: In the macroscopic world, time is intrinsically asymmetric, flowing in a specific direction, from past to future. However, the same is not necessarily true for quantum systems, as some quantum processes produce valid quantum evolutions under time reversal. Supposing that such processes can be probed in both time directions, we can also consider quantum processes probed in a coherent superposition of forwards and backwards time directions. This yields a broader class of quantum processes than the ones considered so far in the literature, including those with indefinite causal order. In this work, we demonstrate for the first time an operation belonging to this new class: the quantum time flip. Using a photonic realisation of this operation, we apply it to a game formulated as a discrimination task between two sets of operators. This game not only serves as a witness of an indefinite time direction, but also allows for a computational advantage over strategies using a fixed time direction, and even those with an indefinite causal order.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. L. Hardy, arXiv e-prints  (2005), arXiv:gr-qc/0509120 [gr-qc].
  2. O. Oreshkov, F. Costa, and Č. Brukner, Nature Communications 3, 1092 (2012), arXiv:1105.4464 [quant-ph].
  3. G. Rubino, G. Manzano, and Č. Brukner, Communications Physics 4, 1 (2021), arXiv:2008.02818 [quant-ph].
  4. G. Chiribella and Z. Liu, Communications Physics 5, 190 (2022), arXiv:2012.03859 [quant-ph].
  5. G. Chiribella and D. Ebler, New Journal of Physics 18, 093053 (2016), arXiv:1606.02394 [quant-ph].
  6. M. Navascués, Phys. Rev. X 8, 031008 (2018), arXiv:1710.02470 [quant-ph].
  7. M. T. Quintino and D. Ebler, Quantum 6, 679 (2022), arXiv:2109.08202 [quant-ph].
  8. D. Trillo, B. Dive, and M. Navascués, Quantum 4, 374 (2020), arXiv:1903.10568 [quant-ph].
  9. D. Trillo, B. Dive, and M. Navascués, Phys. Rev. Lett. 130, 110201 (2023), arXiv:2205.01131 [quant-ph].
  10. S. Yoshida, A. Soeda, and M. Murao, Phys. Rev. Lett. 131, 120602 (2023), arXiv:2209.02907 [quant-ph].
  11. M. Nielsen and I. Chuang, Quantum Computation and Quantum Information, Cambridge Series on Information and the Natural Sciences (Cambridge University Press, 2000).
  12. J. Watrous, arXiv e-prints  (2008), arXiv:0804.3401 [quant-ph].
  13. A. Soeda, Limitations on quantum subroutine designing due to the linear structure of quantum operators (2013).
  14. A. Bisio, M. Dall’Arno, and P. Perinotti, Phys. Rev. A 94, 022340 (2016), arXiv:1509.01062 [quant-ph].
  15. J. Bavaresco, M. Murao, and M. T. Quintino, Phys. Rev. Lett. 127, 200504 (2021), 2011.08300 [quant-ph].
  16. G. Chiribella and D. Ebler, Nature Communications 10, 1472 (2019), arXiv:1806.06459 [quant-ph].
  17. R. Simon and N. Mukunda, Physics Letters A 143, 165 (1990).
  18. T. Strömberg, P. Schiansky, and P. Walther, Appl. Opt. 63, 1822 (2024), arXiv:2312.10145.
  19. T. Strömberg, Exploring quantum information with single photons, Ph.D. thesis, University of Vienna (2024).
  20. R. Oeckl, Advances in Theoretical and Mathematical Physics 12, 319 – 352 (2008), arXiv:hep-th/0509122 [hep-th].
  21. O. Oreshkov and N. J. Cerf, New Journal of Physics 18, 073037 (2016), arXiv:1406.3829 [quant-ph].
  22. G. Svetlichny, International Journal of Theoretical Physics 50, 3903 (2011), arXiv:0902.4898 [quant-ph].
  23. G. Chiribella, E. Aurell, and K. Życzkowski, Physical Review Research 3, 033028 (2021), arXiv:2101.04962 [quant-ph].
  24. S. Nakayama, A. Soeda, and M. Murao, AIP Conference Proceedings 1633, 183 (2014).
  25. O. Oreshkov, Quantum 3, 206 (2019), arXiv:1801.07594 [quant-ph].
  26. N. Paunković and M. Vojinović, Quantum 4, 275 (2020), arXiv:1905.09682 [quant-ph].
  27. V. Vilasini and R. Renner, arXiv preprint  (2022), arXiv:2203.11245 [quant-ph].
  28. Z. Liu, M. Yang, and G. Chiribella, New Journal of Physics 25, 043017 (2023), arXiv:2212.08265 [quant-ph].
  29. G. Chiribella, G. M. D’Ariano, and P. Perinotti, Phys. Rev. A 80, 022339 (2009), arXiv:0904.4483 [quant-ph].
  30. M. Ziman, Phys. Rev. A 77, 062112 (2008), arXiv:0802.3862 [quant-ph].
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com
Youtube Logo Streamline Icon: https://streamlinehq.com