Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Holographic-Type Communication for Digital Twin: A Learning-based Auction Approach (2211.01016v3)

Published 2 Nov 2022 in cs.NI

Abstract: Digital Twin (DT) technologies, which aim to build digital replicas of physical entities, are the key to providing efficient, concurrent simulation and analysis of real-world objects. In displaying DTs, Holographic-Type Communication (HTC), which supports the transmission of holographic data such as Light Field (LF), can provide an immersive way for users to interact with Holographic DTs (HDT). However, it is challenging to effectively allocate interactive and resource-intensive HDT services among HDT users and providers. In this paper, we integrate the paradigms of HTC and DT to form a HTC for DT system, design a marketplace for HDT services where HDT users' and providers' prices are evaluated by their valuation functions, and propose an auction-based mechanism to match HDT services using a learning-based Double Dutch Auction (DDA). Specifically, we apply DDA and train an agent acting as the auctioneer to adjust the auction clock dynamically using Deep Reinforcement Learning (DRL), aiming to achieve the best market efficiency. Simulation results demonstrate that the proposed learning-based auctioneer can achieve near-optimal social welfare at halved auction information exchange cost of the baseline method.

Citations (1)

Summary

We haven't generated a summary for this paper yet.