Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Universal location of Yang-Lee edge singularity in classic O(N) universality classes (2211.00710v2)

Published 1 Nov 2022 in hep-ph and cond-mat.stat-mech

Abstract: Employing the functional renormalization group approach at next-to-leading order of the derivative expansion, we refine our earlier findings for the location of the Yang-Lee edge singularity in classic O(N) universality classes. For the universality classes of interest to QCD, in three dimensions, we found $|z_c|/R_\chi{1/\gamma} = 1.612(9),\ 1.597(3)$ for $N=2$, $4$ correspondingly. We also established $|z_c| = 2.04(8),\ 1.69(3)$ for $N=2$, $4$ albeit with greater systematic error.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (63)
  1. J. Engels, L. Fromme, and M. Seniuch, Numerical equation of state from an improved three-dimensional Ising model, Nucl. Phys. B 655, 277 (2003), arXiv:cond-mat/0209492 .
  2. M. Hasenbusch, A Monte Carlo study of the three-dimensional XY universality class: universal amplitude ratios, J. Stat. Mech. 0812, P12006 (2008), arXiv:0810.2716 [cond-mat.stat-mech] .
  3. F. Kos, D. Poland, and D. Simmons-Duffin, Bootstrapping the O⁢(N)𝑂𝑁O(N)italic_O ( italic_N ) vector models, JHEP 06, 091, arXiv:1307.6856 [hep-th] .
  4. M. Hasenbusch, Three-dimensional O⁢(N)𝑂𝑁O(N)italic_O ( italic_N )-invariant ϕ4superscriptitalic-ϕ4\phi^{4}italic_ϕ start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT models at criticality for N≥4𝑁4N\geq 4italic_N ≥ 4, Phys. Rev. B 105, 054428 (2022), arXiv:2112.03783 [hep-lat] .
  5. F. Rennecke and V. V. Skokov, Universal location of Yang-Lee edge singularity for a one-component field theory, Annals Phys. 444, 169010 (2022), arXiv:2203.16651 [hep-ph] .
  6. C. N. Yang and T. D. Lee, Statistical theory of equations of state and phase transitions. i. theory of condensation, Phys. Rev. 87, 404 (1952).
  7. T. D. Lee and C. N. Yang, Statistical theory of equations of state and phase transitions. ii. lattice gas and ising model, Phys. Rev. 87, 410 (1952).
  8. F. Gliozzi and A. Rago, Critical exponents of the 3d Ising and related models from Conformal Bootstrap, JHEP 10, 042, arXiv:1403.6003 [hep-th] .
  9. X. An, D. Mesterházy, and M. A. Stephanov, Functional renormalization group approach to the Yang-Lee edge singularity, JHEP 07, 041, arXiv:1605.06039 [hep-th] .
  10. L. Zambelli and O. Zanusso, Lee-Yang model from the functional renormalization group, Phys. Rev. D 95, 085001 (2017), arXiv:1612.08739 [hep-th] .
  11. M. E. Fisher, Yang-Lee Edge Singularity and phi**3 Field Theory, Phys. Rev. Lett. 40, 1610 (1978).
  12. J. Berges, N. Tetradis, and C. Wetterich, Nonperturbative renormalization flow in quantum field theory and statistical physics, Phys. Rept. 363, 223 (2002), arXiv:hep-ph/0005122 .
  13. P. M. Stevenson, Optimized Perturbation Theory, Phys. Rev. D 23, 2916 (1981).
  14. B. Widom, Equation of state in the neighborhood of the critical point, The Journal of Chemical Physics 43, 3898 (1965), https://doi.org/10.1063/1.1696618 .
  15. G. De Polsi, G. Hernández-Chifflet, and N. Wschebor, Precision calculation of universal amplitude ratios in O(N) universality classes: Derivative expansion results at order O(∂4superscript4\partial^{4}∂ start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT), Phys. Rev. E 104, 064101 (2021), arXiv:2109.14731 [cond-mat.stat-mech] .
  16. M. Moshe and J. Zinn-Justin, Quantum field theory in the large N limit: A Review, Phys. Rept. 385, 69 (2003), arXiv:hep-th/0306133 .
  17. H. T. Ding et al. (HotQCD), Chiral Phase Transition Temperature in ( 2+1 )-Flavor QCD, Phys. Rev. Lett. 123, 062002 (2019), arXiv:1903.04801 [hep-lat] .
  18. R. Abe and M. Masutani, Note on Epsilon Expansion for Critical Amplitude Ratio r (Chi), Prog. Theor. Phys. 59, 672 (1978).
  19. G. M. Avdeeva and A. A. Migdal, Equation of State in (4 - epsilon) - Dimensional Ising Model, Soviet Journal of Experimental and Theoretical Physics Letters 16, 178 (1972).
  20. P. Fonseca and A. Zamolodchikov, Ising field theory in a magnetic field: Analytic properties of the free energy,   (2001), arXiv:hep-th/0112167 .
  21. H.-L. Xu and A. Zamolodchikov, 2D Ising Field Theory in a magnetic field: the Yang-Lee singularity, JHEP 08, 057, arXiv:2203.11262 [hep-th] .
  22. B. Nienhuis, Exact critical point and critical exponents of O⁢(n)O𝑛\mathrm{O}(n)roman_O ( italic_n ) models in two dimensions, Phys. Rev. Lett. 49, 1062 (1982).
  23. V. L. Berezinskiǐ, Destruction of Long-range Order in One-dimensional and Two-dimensional Systems having a Continuous Symmetry Group I. Classical Systems, Soviet Journal of Experimental and Theoretical Physics 32, 493 (1971).
  24. V. L. Berezinskiǐ, Destruction of Long-range Order in One-dimensional and Two-dimensional Systems Possessing a Continuous Symmetry Group. II. Quantum Systems, Soviet Journal of Experimental and Theoretical Physics 34, 610 (1972).
  25. J. M. Kosterlitz and D. J. Thouless, Ordering, metastability and phase transitions in two-dimensional systems, Journal of Physics C: Solid State Physics 6, 1181 (1973).
  26. E. Brézin and J. Zinn-Justin, Renormalization of the nonlinear σ𝜎\sigmaitalic_σ model in 2+ϵ2italic-ϵ2+\epsilon2 + italic_ϵ dimensions—application to the heisenberg ferromagnets, Phys. Rev. Lett. 36, 691 (1976).
  27. J. L. Cardy and H. W. Hamber, o⁢(n)𝑜𝑛o(n)italic_o ( italic_n ) heisenberg model close to n=d=2𝑛𝑑2n=d=2italic_n = italic_d = 2, Phys. Rev. Lett. 45, 499 (1980).
  28. S. Q. Yang and D. Belitz, Equations of state for nonlinear sigma-models. 2: Relations between resummation schemes, and crossover phenomena, Nucl. Phys. B 441, 549 (1995), arXiv:cond-mat/9412105 .
  29. A. Codello, N. Defenu, and G. D’Odorico, Critical exponents of O(N) models in fractional dimensions, Phys. Rev. D 91, 105003 (2015), arXiv:1410.3308 [hep-th] .
  30. A. Codello and G. D’Odorico, o⁢(n)𝑜𝑛o(n)italic_o ( italic_n )-universality classes and the mermin-wagner theorem, Phys. Rev. Lett. 110, 141601 (2013).
  31. A. Chlebicki and P. Jakubczyk, Analyticity of critical exponents of the O⁢(N)𝑂𝑁O(N)italic_O ( italic_N ) models from nonperturbative renormalization, SciPost Phys. 10, 134 (2021).
  32. R. Balian and G. Toulouse, Critical exponents for transitions with n=−2𝑛2n=-2italic_n = - 2 components of the order parameter, Phys. Rev. Lett. 30, 544 (1973).
  33. M. E. Fisher, Classical, n-Component Spin Systems or Fields with Negative Even Integral n, Phys. Rev. Lett. 30, 679 (1973).
  34. C. Wetterich, Exact evolution equation for the effective potential, Phys. Lett. B 301, 90 (1993), arXiv:1710.05815 [hep-th] .
  35. B. Delamotte, D. Mouhanna, and M. Tissier, Nonperturbative renormalization group approach to frustrated magnets, Phys. Rev. B 69, 134413 (2004), arXiv:cond-mat/0309101 .
  36. J. Braun, Fermion Interactions and Universal Behavior in Strongly Interacting Theories, J. Phys. G 39, 033001 (2012), arXiv:1108.4449 [hep-ph] .
  37. P. Kopietz, L. Bartosch, and F. Schütz, Introduction to the functional renormalization group, Vol. 798 (2010).
  38. T. R. Morris, The Exact renormalization group and approximate solutions, Int. J. Mod. Phys. A 9, 2411 (1994a), arXiv:hep-ph/9308265 .
  39. U. Ellwanger, FLow equations for N point functions and bound states, Z. Phys. C 62, 503 (1994), arXiv:hep-ph/9308260 .
  40. J. Berges, N. Tetradis, and C. Wetterich, Critical equation of state from the average action, Phys. Rev. Lett. 77, 873 (1996), arXiv:hep-th/9507159 .
  41. O. Bohr, B. J. Schaefer, and J. Wambach, Renormalization group flow equations and the phase transition in O(N) models, Int. J. Mod. Phys. A 16, 3823 (2001), arXiv:hep-ph/0007098 .
  42. D. F. Litim, Derivative expansion and renormalization group flows, JHEP 11, 059, arXiv:hep-th/0111159 .
  43. C. Bervillier, A. Juttner, and D. F. Litim, High-accuracy scaling exponents in the local potential approximation, Nucl. Phys. B 783, 213 (2007), arXiv:hep-th/0701172 .
  44. J. Braun and B. Klein, Scaling functions for the O(4)-model in d=3 dimensions, Phys. Rev. D 77, 096008 (2008), arXiv:0712.3574 [hep-th] .
  45. J. Braun and B. Klein, Finite-Size Scaling behavior in the O(4)-Model, Eur. Phys. J. C 63, 443 (2009), arXiv:0810.0857 [hep-ph] .
  46. B. Stokic, B. Friman, and K. Redlich, The Functional Renormalization Group and O(4) scaling, Eur. Phys. J. C 67, 425 (2010), arXiv:0904.0466 [hep-ph] .
  47. D. F. Litim and D. Zappala, Ising exponents from the functional renormalisation group, Phys. Rev. D 83, 085009 (2011), arXiv:1009.1948 [hep-th] .
  48. N. Defenu, A. Trombettoni, and A. Codello, Fixed-point structure and effective fractional dimensionality for O(N)𝑁(N)( italic_N ) models with long-range interactions, Phys. Rev. E 92, 052113 (2015), arXiv:1409.8322 [cond-mat.stat-mech] .
  49. A. Eichhorn, L. Janssen, and M. M. Scherer, Critical O(N) models above four dimensions: Small-N solutions and stability, Phys. Rev. D 93, 125021 (2016), arXiv:1604.03561 [hep-th] .
  50. D. F. Litim and E. Marchais, Critical O⁢(N)𝑂𝑁O(N)italic_O ( italic_N ) models in the complex field plane, Phys. Rev. D 95, 025026 (2017), arXiv:1607.02030 [hep-th] .
  51. A. Jüttner, D. F. Litim, and E. Marchais, Global Wilson–Fisher fixed points, Nucl. Phys. B 921, 769 (2017), arXiv:1701.05168 [hep-th] .
  52. D. Roscher and I. F. Herbut, Critical O⁢(2)𝑂2O(2)italic_O ( 2 ) field theory near six dimensions beyond one loop, Phys. Rev. D 97, 116019 (2018), arXiv:1805.01480 [hep-th] .
  53. S. Yabunaka and B. Delamotte, Why Might the Standard Large N𝑁Nitalic_N Analysis Fail in the O(N𝑁Nitalic_N) Model: The Role of Cusps in the Fixed Point Potentials, Phys. Rev. Lett. 121, 231601 (2018), arXiv:1807.04681 [cond-mat.stat-mech] .
  54. N. Tetradis and D. F. Litim, Analytical solutions of exact renormalization group equations, Nucl. Phys. B 464, 492 (1996), arXiv:hep-th/9512073 .
  55. T. R. Morris, Derivative expansion of the exact renormalization group, Phys. Lett. B 329, 241 (1994b), arXiv:hep-ph/9403340 .
  56. D. F. Litim, Optimized renormalization group flows, Phys. Rev. D 64, 105007 (2001b), arXiv:hep-th/0103195 .
  57. D. F. Litim, J. M. Pawlowski, and L. Vergara, Convexity of the effective action from functional flows,   (2006), arXiv:hep-th/0602140 .
  58. J. M. Pawlowski and F. Rennecke, Higher order quark-mesonic scattering processes and the phase structure of QCD, Phys. Rev. D 90, 076002 (2014), arXiv:1403.1179 [hep-ph] .
  59. S. Seide and C. Wetterich, Equation of state near the endpoint of the critical line, Nucl. Phys. B 562, 524 (1999), arXiv:cond-mat/9806372 .
  60. S. Mukherjee and V. Skokov, Universality driven analytic structure of the QCD crossover: radius of convergence in the baryon chemical potential, Phys. Rev. D 103, L071501 (2021), arXiv:1909.04639 [hep-ph] .
  61. S. Mukherjee, F. Rennecke, and V. V. Skokov, Analytical structure of the equation of state at finite density: Resummation versus expansion in a low energy model, Phys. Rev. D 105, 014026 (2022), arXiv:2110.02241 [hep-ph] .
  62. G. Basar, G. Dunne, and Z. Yin, Uniformizing Lee-Yang Singularities,   (2021), arXiv:2112.14269 [hep-th] .
  63. R. Guida and J. Zinn-Justin, 3-D Ising model: The Scaling equation of state, Nucl. Phys. B 489, 626 (1997), arXiv:hep-th/9610223 .
Citations (2)

Summary

We haven't generated a summary for this paper yet.