Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Case Study of Chinese Sentiment Analysis on Social Media Reviews Based on LSTM (2210.17452v1)

Published 31 Oct 2022 in cs.CL and cs.LG

Abstract: Network public opinion analysis is obtained by a combination of NLP and public opinion supervision, and is crucial for monitoring public mood and trends. Therefore, network public opinion analysis can identify and solve potential and budding social problems. This study aims to realize an analysis of Chinese sentiment in social media reviews using a long short-term memory network (LSTM) model. The dataset was obtained from Sina Weibo using a web crawler and was cleaned with Pandas. First, Chinese comments regarding the legal sentencing in of Tangshan attack and Jiang Ge Case were segmented and vectorized. Then, a binary LSTM model was trained and tested. Finally, sentiment analysis results were obtained by analyzing the comments with the LSTM model. The accuracy of the proposed model has reached approximately 92%.

Citations (1)

Summary

We haven't generated a summary for this paper yet.