Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pneg: Prompt-based Negative Response Generation for Dialogue Response Selection Task (2210.17238v1)

Published 31 Oct 2022 in cs.CL

Abstract: In retrieval-based dialogue systems, a response selection model acts as a ranker to select the most appropriate response among several candidates. However, such selection models tend to rely on context-response content similarity, which makes models vulnerable to adversarial responses that are semantically similar but not relevant to the dialogue context. Recent studies have shown that leveraging these adversarial responses as negative training samples is useful for improving the discriminating power of the selection model. Nevertheless, collecting human-written adversarial responses is expensive, and existing synthesizing methods often have limited scalability. To overcome these limitations, this paper proposes a simple but efficient method for generating adversarial negative responses leveraging a large-scale LLM. Experimental results on dialogue selection tasks show that our method outperforms other methods of synthesizing adversarial negative responses. These results suggest that our method can be an effective alternative to human annotators in generating adversarial responses. Our dataset and generation code is available at https://github.com/leenw23/generating-negatives-by-gpt3.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Nyoungwoo Lee (4 papers)
  2. ChaeHun Park (15 papers)
  3. Ho-Jin Choi (18 papers)
  4. Jaegul Choo (161 papers)
Citations (6)