Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The isotropy group of the matrix multiplication tensor (2210.16565v1)

Published 29 Oct 2022 in cs.CC and math.RT

Abstract: By an {\em isotropy group} of a tensor $t\in V_1 \otimes V_2\otimes V_3=\widetilde V$ we mean the group of all invertible linear transformations of $\widetilde V$ that leave $t$ invariant and are compatible (in an obvious sense) with the structure of tensor product on~$\widetilde V$. We consider the case where $t$ is the structure tensor of multiplication map of rectangular matrices. The isotropy group of this tensor was studied in 1970s by de Groote, Strassen, and Brockett-Dobkin. In the present work we enlarge, make more precise, expose in the language of group actions on tensor spaces, and endow with proofs the results previously known. This is necessary for studying the algorithms of fast matrix multiplication admitting symmetries. The latter seems to be a promising new way for constructing fast algorithms.

Citations (3)

Summary

We haven't generated a summary for this paper yet.