Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Federated clustering with GAN-based data synthesis (2210.16524v2)

Published 29 Oct 2022 in cs.LG

Abstract: Federated clustering (FC) is an extension of centralized clustering in federated settings. The key here is how to construct a global similarity measure without sharing private data, since the local similarity may be insufficient to group local data correctly and the similarity of samples across clients cannot be directly measured due to privacy constraints. Obviously, the most straightforward way to analyze FC is to employ the methods extended from centralized ones, such as K-means (KM) and fuzzy c-means (FCM). However, they are vulnerable to non independent-and-identically-distributed (non-IID) data among clients. To handle this, we propose a new federated clustering framework, named synthetic data aided federated clustering (SDA-FC). It trains generative adversarial network locally in each client and uploads the generated synthetic data to the server, where KM or FCM is performed on the synthetic data. The synthetic data can make the model immune to the non-IID problem and enable us to capture the global similarity characteristics more effectively without sharing private data. Comprehensive experiments reveals the advantages of SDA-FC, including superior performance in addressing the non-IID problem and the device failures.

Citations (7)

Summary

We haven't generated a summary for this paper yet.