Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sentiment Classification of Code-Switched Text using Pre-trained Multilingual Embeddings and Segmentation (2210.16461v1)

Published 29 Oct 2022 in cs.CL and cs.AI

Abstract: With increasing globalization and immigration, various studies have estimated that about half of the world population is bilingual. Consequently, individuals concurrently use two or more languages or dialects in casual conversational settings. However, most research is natural language processing is focused on monolingual text. To further the work in code-switched sentiment analysis, we propose a multi-step natural language processing algorithm utilizing points of code-switching in mixed text and conduct sentiment analysis around those identified points. The proposed sentiment analysis algorithm uses semantic similarity derived from large pre-trained multilingual models with a handcrafted set of positive and negative words to determine the polarity of code-switched text. The proposed approach outperforms a comparable baseline model by 11.2% for accuracy and 11.64% for F1-score on a Spanish-English dataset. Theoretically, the proposed algorithm can be expanded for sentiment analysis of multiple languages with limited human expertise.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Saurav K. Aryal (5 papers)
  2. Howard Prioleau (3 papers)
  3. Gloria Washington (5 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.