Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Regularized numerical methods for the nonlinear Schrödinger equation with singular nonlinearity (2210.16361v1)

Published 28 Oct 2022 in math.NA and cs.NA

Abstract: We present different regularizations and numerical methods for the nonlinear Schr\"odinger equation with singular nonlinearity (sNLSE) including the regularized Lie-Trotter time-splitting (LTTS) methods and regularized Lawson-type exponential integrator (LTEI) methods. Due to the blowup of the singular nonlinearity, i.e., $f(\rho)=\rho{\alpha}$ with a fixed exponent $\alpha<0$ goes to infinity when $\rho \to 0+$ ($\rho = |\psi|2$ represents the density with $\psi$ being the complex-valued wave function or order parameter), there are significant difficulties in designing accurate and efficient numerical schemes to solve the sNLSE. In order to suppress the round-off error and avoid blowup near $\rho = 0+$, two types of regularizations for the sNLSE are proposed with a small regularization parameter $0 < \eps \ll 1$. One is based on the local energy regularization (LER) for the sNLSE via regularizing the energy density $F(\rho) = \frac{1}{\alpha+1}\rho{\alpha+1}$ locally near $\rho = 0+$ with a polynomial approximation and then obtaining a local energy regularized nonlinear Schr\"odinger equation via energy variation. The other one is the global nonlinearity regularization which directly regularizes the singular nonlinearity $f(\rho)=\rho{\alpha}$ to avoid blowup near $\rho = 0+$. For the regularized models, we apply the first-order Lie-Trotter time-splitting method and Lawson-type exponential integrator method for temporal discretization and combine with the Fourier pseudospectral method in space to numerically solve them. Numerical examples are provided to show the convergence of the regularized models to the sNLSE and they suggest that the local energy regularization performs better than directly regularizing the singular nonlinearity globally.

Citations (5)

Summary

We haven't generated a summary for this paper yet.