Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Confidence-Calibrated Face and Kinship Verification (2210.13905v5)

Published 25 Oct 2022 in cs.CV

Abstract: In this paper, we investigate the problem of prediction confidence in face and kinship verification. Most existing face and kinship verification methods focus on accuracy performance while ignoring confidence estimation for their prediction results. However, confidence estimation is essential for modeling reliability and trustworthiness in such high-risk tasks. To address this, we introduce an effective confidence measure that allows verification models to convert a similarity score into a confidence score for any given face pair. We further propose a confidence-calibrated approach, termed Angular Scaling Calibration (ASC). ASC is easy to implement and can be readily applied to existing verification models without model modifications, yielding accuracy-preserving and confidence-calibrated probabilistic verification models. In addition, we introduce the uncertainty in the calibrated confidence to boost the reliability and trustworthiness of the verification models in the presence of noisy data. To the best of our knowledge, our work presents the first comprehensive confidence-calibrated solution for modern face and kinship verification tasks. We conduct extensive experiments on four widely used face and kinship verification datasets, and the results demonstrate the effectiveness of our proposed approach. Code and models are available at https://github.com/cnulab/ASC.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com