Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spectral Clustering-aware Learning of Embeddings for Speaker Diarisation (2210.13576v2)

Published 24 Oct 2022 in cs.SD and eess.AS

Abstract: In speaker diarisation, speaker embedding extraction models often suffer from the mismatch between their training loss functions and the speaker clustering method. In this paper, we propose the method of spectral clustering-aware learning of embeddings (SCALE) to address the mismatch. Specifically, besides an angular prototype cal (AP) loss, SCALE uses a novel affinity matrix loss which directly minimises the error between the affinity matrix estimated from speaker embeddings and the reference. SCALE also includes p-percentile thresholding and Gaussian blur as two important hyper-parameters for spectral clustering in training. Experiments on the AMI dataset showed that speaker embeddings obtained with SCALE achieved over 50% relative speaker error rate reductions using oracle segmentation, and over 30% relative diarisation error rate reductions using automatic segmentation when compared to a strong baseline with the AP-loss-based speaker embeddings.

Citations (1)

Summary

We haven't generated a summary for this paper yet.