Protocols for classically training quantum generative models on probability distributions (2210.13442v2)
Abstract: Quantum Generative Modelling (QGM) relies on preparing quantum states and generating samples from these states as hidden - or known - probability distributions. As distributions from some classes of quantum states (circuits) are inherently hard to sample classically, QGM represents an excellent testbed for quantum supremacy experiments. Furthermore, generative tasks are increasingly relevant for industrial machine learning applications, and thus QGM is a strong candidate for demonstrating a practical quantum advantage. However, this requires that quantum circuits are trained to represent industrially relevant distributions, and the corresponding training stage has an extensive training cost for current quantum hardware in practice. In this work, we propose protocols for classical training of QGMs based on circuits of the specific type that admit an efficient gradient computation, while remaining hard to sample. In particular, we consider Instantaneous Quantum Polynomial (IQP) circuits and their extensions. Showing their classical simulability in terms of the time complexity, sparsity and anti-concentration properties, we develop a classically tractable way of simulating their output probability distributions, allowing classical training to a target probability distribution. The corresponding quantum sampling from IQPs can be performed efficiently, unlike when using classical sampling. We numerically demonstrate the end-to-end training of IQP circuits using probability distributions for up to 30 qubits on a regular desktop computer. When applied to industrially relevant distributions this combination of classical training with quantum sampling represents an avenue for reaching advantage in the NISQ era.
- F. Arute et al., Nature 574, 505 (2019).
- F. Pan, K. Chen, and P. Zhang, arXiv:2111.03011 (2021), arXiv:2111.03011.
- I. Georgescu, Nature Reviews Physics 4, 362 (2022).
- P.-L. Dallaire-Demers and N. Killoran, Physical Review A 98, 012324 (2018).
- A. E. Paine, V. E. Elfving, and O. Kyriienko, 10.48550/ARXIV.2108.03190 10.48550/ARXIV.2108.03190 (2021).
- J. Harris, B. Yan, and N. A. Sinitsyn, Physical Review Letters 129, 050602 (2022).
- C. Gross and I. Bloch, Science 357, 995 (2017).
- M. P. Harrigan et al., Nature Physics 17, 332 (2021).
- D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Nature 323, 533 (1986).
- O. Kyriienko and V. E. Elfving, Physical Review A 104, 052417 (2021).
- J.-G. Liu and L. Wang, Physical Review A 98, 062324 (2018).
- C. Zoufal, A. Lucchi, and S. Woerner, npj Quantum Information 5, 103 (2019).
- A patent application for the method described in this manuscript has been submitted by PASQAL with Sachin Kasture and Vincent E. Elfving as inventors. (2022).
- L. Banchi, N. Quesada, and J. M. Arrazola, Physical Review A 102, 10.1103/PhysRevA.102.012417 (2020b).
- H. Pashayan, S. D. Bartlett, and D. Gross, Quantum 4, 10.22331/q-2020-01-13-223 (2020).
- M. van den Nest, Quantum Information and Computation 11, 784 (2011).
- O. Kyriienko, A. E. Paine, and V. E. Elfving, arXiv:2202.08253 (2022), arXiv:2202.08253.
- O. Kyriienko, A. E. Paine, and V. E. Elfving, Physical Review A 103, 052416 (2021).
- A. E. Paine, V. E. Elfving, and O. Kyriienko, 10.48550/ARXIV.2203.08884 10.48550/ARXIV.2203.08884 (2022).
- D. Gottesman, arXiv:quant-ph/9807006 (1998).
- M. van Den Nest, Quantum Information and Computation 10, 0258 (2010).
- R. Jozsa and A. Miyake, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 464, 3089 (2008).
- B. M. Terhal and D. P. DiVincenzo, Phys. Rev. A 65, 032325 (2001).
- D. J. Brod, Physical Review A 93, 10.1103/PhysRevA.93.062332 (2016).
- D. Shepherd, arXiv:1005.1744 (2010a).
- D. J. Shepherd, 10.48550/ARXIV.1005.1425 10.48550/ARXIV.1005.1425 (2010b).
- M. J. Bremner, A. Montanaro, and D. J. Shepherd, Physical Review Letters 117, 10.1103/PhysRevLett.117.080501 (2016).
- S. Aaronson and A. Ambainis, Proceedings of the forty-seventh annual ACM symposium on Theory of Computing (ACM, 2015) pp. 307–316.
- N. Bansal and M. Sinha, Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing (ACM, Virtual Italy, 2021) pp. 1303–1316.
- S. Lloyd and C. Weedbrook, Phys. Rev. Lett. 121, 040502 (2018).
- M. Raissi, P. Perdikaris, and G. E. Karniadakis, Journal of Computational Physics 378, 686 (2019).
- I. L. Markov and Y. Shi, SIAM Journal on Computing 38, 963 (2008).
- G. Kalachev, P. Panteleev, and M.-H. Yung, arXiv:2108.05665 (2021).
- J. Gray and S. Kourtis, Quantum 5, 1 (2021).
- E. Farhi, J. Goldstone, and S. Gutmann, arXiv 10.48550/ARXIV.1411.4028 (2014).