Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 45 tok/s
GPT-5 High 43 tok/s Pro
GPT-4o 103 tok/s
GPT OSS 120B 475 tok/s Pro
Kimi K2 215 tok/s Pro
2000 character limit reached

Contraction of Locally Differentially Private Mechanisms (2210.13386v4)

Published 24 Oct 2022 in cs.IT, cs.CR, math.IT, math.ST, stat.ML, and stat.TH

Abstract: We investigate the contraction properties of locally differentially private mechanisms. More specifically, we derive tight upper bounds on the divergence between $PK$ and $QK$ output distributions of an $\epsilon$-LDP mechanism $K$ in terms of a divergence between the corresponding input distributions $P$ and $Q$, respectively. Our first main technical result presents a sharp upper bound on the $\chi2$-divergence $\chi2(PK}|QK)$ in terms of $\chi2(P|Q)$ and $\varepsilon$. We also show that the same result holds for a large family of divergences, including KL-divergence and squared Hellinger distance. The second main technical result gives an upper bound on $\chi2(PK|QK)$ in terms of total variation distance $\mathsf{TV}(P, Q)$ and $\epsilon$. We then utilize these bounds to establish locally private versions of the van Trees inequality, Le Cam's, Assouad's, and the mutual information methods, which are powerful tools for bounding minimax estimation risks. These results are shown to lead to better privacy analyses than the state-of-the-arts in several statistical problems such as entropy and discrete distribution estimation, non-parametric density estimation, and hypothesis testing.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.