Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Resilience and Load Balancing in Fog Networks: A Multi-Criteria Decision Analysis Approach (2210.13385v1)

Published 24 Oct 2022 in cs.DC and cs.NI

Abstract: The advent of Cloud Computing enabled the proliferation of IoT applications for smart environments. However, the distance of these resources makes them unsuitable for delay-sensitive applications. Hence, Fog Computing has emerged to provide such capabilities in proximity to end devices through distributed resources. These limited resources can collaborate to serve distributed IoT application workflows using the concept of stateless micro Fog service replicas, which provides resiliency and maintains service availability in the face of failures. Load balancing supports this collaboration by optimally assigning workloads to appropriate services, i.e., distributing the load among Fog nodes to fairly utilize compute and network resources and minimize execution delays. In this paper, we propose using ELECTRE, a Multi-Criteria Decision Analysis (MCDA) approach, to efficiently balance the load in Fog environments. We considered multiple objectives to make service selection decisions, including compute and network load information. We evaluate our approach in a realistic unbalanced topological setup with heterogeneous workload requirements. To the best of our knowledge, this is the first time ELECTRE-based methods are used to balance the load in Fog environments. Through simulations, we compared the performance of our proposed approach with traditional baseline methods that are commonly used in practice, namely random, Round-Robin, nearest node, and fastest service selection algorithms. In terms of the overall system performance, our approach outperforms these methods with up to 67% improvement.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (51)
  1. S. Yi, C. Li, and Q. Li, “A survey of fog computing: Concepts, applications and issues,” in Proceedings of the 2015 Workshop on Mobile Big Data (Mobidata ’15).   New York, NY, USA: Association for Computing Machinery, 2015, p. 37–42. [Online]. Available: https://doi.org/10.1145/2757384.2757397
  2. Y. Guan, J. Shao, G. Wei, and M. Xie, “Data security and privacy in fog computing,” IEEE Network, vol. 32, no. 5, pp. 106–111, 2018.
  3. M. Antonini, M. Vecchio, and F. Antonelli, “Fog computing architectures: A reference for practitioners,” IEEE Internet of Things Magazine, vol. 2, no. 3, pp. 19–25, 2019.
  4. N. Wang and B. Varghese, “Context-aware distribution of fog applications using deep reinforcement learning,” arXiv preprint, 2020. [Online]. Available: https://arxiv.org/abs/2001.09228
  5. O. Rana, M. Shaikh, M. Ali, A. Anjum, and L. Bittencourt, “Vertical workflows: Service orchestration across cloud & edge resources,” in Proceedings of the 6th International Conference on Future Internet of Things and Cloud (FiCloud).   IEEE, 2018, pp. 355–362.
  6. I. Martinez, A. S. Hafid, and A. Jarray, “Design, resource management, and evaluation of fog computing systems: A survey,” IEEE Internet of Things Journal, vol. 8, no. 4, pp. 2494–2516, 2021.
  7. A. Nadembega, A. Hafid, and T. Taleb, “A destination and mobility path prediction scheme for mobile networks,” IEEE Transactions on Vehicular Technology, vol. 64, no. 6, pp. 2577–2590, 2015.
  8. V. Karagiannis and S. Schulte, “Comparison of alternative architectures in fog computing,” in Proceedings of the 4th International Conference on Fog and Edge Computing (ICFEC).   IEEE, 2020, pp. 19–28.
  9. M. H. Kashani, A. Ahmadzadeh, and E. Mahdipour, “Load balancing mechanisms in fog computing: A systematic review,” arXiv preprint, 2020. [Online]. Available: https://arxiv.org/abs/2011.14706
  10. S. Sthapit, J. Thompson, N. M. Robertson, and J. R. Hopgood, “Computational load balancing on the edge in absence of cloud and fog,” IEEE Transactions on Mobile Computing, vol. 18, no. 7, pp. 1499–1512, 2019.
  11. E. C. Pinto Neto, G. Callou, and F. Aires, “An algorithm to optimise the load distribution of fog environments,” in Proceedings of the 2017 International Conference on Systems, Man, and Cybernetics (SMC).   IEEE, 2017, pp. 1292–1297.
  12. C. Puliafito, E. Mingozzi, and G. Anastasi, “Fog computing for the internet of mobile things: Issues and challenges,” in 2017 IEEE International Conference on Smart Computing (SMARTCOMP), 2017, pp. 1–6.
  13. Y. Yu, X. Li, and C. Qian, “SDLB: A scalable and dynamic software load balancer for fog and mobile edge computing,” in Proceedings of the Workshop on Mobile Edge Communications, ser. MECOMM ’17.   New York, NY, USA: Association for Computing Machinery, 2017, p. 55–60. [Online]. Available: https://doi.org/10.1145/3098208.3098218
  14. B. Wagner and A. Sood, “Economics of resilient cloud services,” in 2016 IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C), 2016, pp. 368–374.
  15. R. Beraldi, C. Canali, R. Lancellotti, and G. P. Mattia, “Distributed load balancing for heterogeneous fog computing infrastructures in smart cities,” Pervasive and Mobile Computing, vol. 67, p. 101221, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1574119220300791
  16. K. Govindan and M. B. Jepsen, “ELECTRE: A comprehensive literature review on methodologies and applications,” European Journal of Operational Research, vol. 250, no. 1, pp. 1–29, 2016. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0377221715006529
  17. P. K. D. Pramanik, S. Biswas, S. Pal, D. Marinković, and P. Choudhury, “A comparative analysis of multi-criteria decision-making methods for resource selection in mobile crowd computing,” Symmetry, vol. 13, no. 9, 2021. [Online]. Available: https://www.mdpi.com/2073-8994/13/9/1713
  18. M. Whaiduzzaman, A. Gani, N. B. Anuar, M. Shiraz, M. N. Haque, and I. T. Haque, “Cloud service selection using multicriteria decision analysis,” The Scientific World Journal, vol. 2014, pp. 1–10, 2014. [Online]. Available: https://doi.org/10.1155/2014/459375
  19. I. Lera, C. Guerrero, and C. Juiz, “Analyzing the applicability of a multi-criteria decision method in fog computing placement problem,” in Proceedings of the Fourth International Conference on Fog and Mobile Edge Computing (FMEC).   IEEE, 2019, pp. 13–20.
  20. Q. Fan and N. Ansari, “Towards workload balancing in fog computing empowered IoT,” IEEE Transactions on Network Science and Engineering, vol. 7, no. 1, pp. 253–262, 2020.
  21. I. Martinez, A. Jarray, and A. S. Hafid, “Scalable design and dimensioning of fog-computing infrastructure to support latency-sensitive iot applications,” IEEE Internet of Things Journal, vol. 7, no. 6, pp. 5504–5520, 2020.
  22. A. Chandak and N. K. Ray, “A review of load balancing in fog computing,” in Proceedings of the 2019 International Conference on Information Technology (ICIT).   IEEE, 2019, pp. 460–465.
  23. A. Nadembega, A. Hafid, and T. Taleb, “Mobility-prediction-aware bandwidth reservation scheme for mobile networks,” IEEE Transactions on Vehicular Technology, vol. 64, no. 6, pp. 2561–2576, 2015.
  24. C. Puliafito, D. M. Gonçalves, M. M. Lopes, L. L. Martins, E. Madeira, E. Mingozzi, O. Rana, and L. F. Bittencourt, “Mobfogsim: Simulation of mobility and migration for fog computing,” Simulation Modelling Practice and Theory, vol. 101, p. 102062, 2020, modeling and Simulation of Fog Computing. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1569190X19301935
  25. K. Velasquez, D. P. Abreu, L. Paquete, M. Curado, and E. Monteiro, “A rank-based mechanism for service placement in the fog,” in Proceedings of the 2020 IFIP Networking Conference (Networking).   IEEE, 2020, pp. 64–72.
  26. I. Lera, C. Guerrero, and C. Juiz, “YAFS: A simulator for IoT scenarios in fog computing,” IEEE Access, vol. 7, pp. 91 745–91 758, 2019.
  27. C. Guerrero, I. Lera, and C. Juiz, “Genetic algorithm for multi-objective optimization of container allocation in cloud architecture,” Journal of Grid Computing, vol. 16, no. 1, pp. 113–135, Mar 2018. [Online]. Available: https://doi.org/10.1007/s10723-017-9419-x
  28. X. He, Z. Ren, C. Shi, and J. Fang, “A novel load balancing strategy of software-defined cloud/fog networking in the internet of vehicles,” China Communications, vol. 13, no. Supplement2, pp. 140–149, 2016.
  29. A. Karamoozian, A. Hafid, and E. M. Aboulhamid, “On the fog-cloud cooperation: How fog computing can address latency concerns of iot applications,” in Proceedings of the Fourth International Conference on Fog and Mobile Edge Computing (FMEC).   IEEE, 2019, pp. 166–172.
  30. A. Brogi and S. Forti, “QoS-aware deployment of IoT applications through the fog,” IEEE Internet of Things Journal, vol. 4, no. 5, pp. 1185–1192, 2017.
  31. K. Velasquez, D. P. Abreu, M. Curado, and E. Monteiro, “Service placement for latency reduction in the internet of things,” Annals of Telecommunications, vol. 72, no. 1, pp. 105–115, Feb 2017. [Online]. Available: https://doi.org/10.1007/s12243-016-0524-9
  32. L. Ni, J. Zhang, C. Jiang, C. Yan, and K. Yu, “Resource allocation strategy in fog computing based on priced timed petri nets,” IEEE Internet of Things Journal, vol. 4, no. 5, pp. 1216–1228, 2017.
  33. N. Téllez, M. Jimeno, A. Salazar, and E. Nino-Ruiz, “A tabu search method for load balancing in fog computing,” International Journal of Artificial Intelligence, vol. 16, pp. 78–105, 09 2018.
  34. D. Puthal, M. S. Obaidat, P. Nanda, M. Prasad, S. P. Mohanty, and A. Y. Zomaya, “Secure and sustainable load balancing of edge data centers in fog computing,” IEEE Communications Magazine, vol. 56, no. 5, pp. 60–65, 2018.
  35. X. Xu, S. Fu, Q. Cai, W. Tian, W. Liu, W. Dou, X. Sun, and A. X. Liu, “Dynamic resource allocation for load balancing in fog environment,” Wireless Communications and Mobile Computing, vol. 2018, p. 6421607, Apr 2018. [Online]. Available: https://doi.org/10.1155/2018/6421607
  36. E. Pereira, I. A. Fischer, R. D. Medina, E. D. Carreno, and E. L. Padoin, “A load balancing algorithm for fog computing environments,” in Proceedings of the Latin American High Performance Computing Conference, J. L. Crespo-Mariño and E. Meneses-Rojas, Eds.   Cham: Springer International Publishing, 2020, pp. 65–77.
  37. A. Mseddi, W. Jaafar, H. Elbiaze, and W. Ajib, “Intelligent resource allocation in dynamic fog computing environments,” in Proceedings of the 8th International Conference on Cloud Networking (CloudNet).   IEEE, 2019, pp. 1–7.
  38. F. M. Talaat, M. S. Saraya, A. I. Saleh, H. A. Ali, and S. H. Ali, “A load balancing and optimization strategy (LBOS) using reinforcement learning in fog computing environment,” Journal of Ambient Intelligence and Humanized Computing, vol. 11, no. 11, pp. 4951–4966, Nov 2020. [Online]. Available: https://doi.org/10.1007/s12652-020-01768-8
  39. J. Baek, G. Kaddoum, S. Garg, K. Kaur, and V. Gravel, “Managing fog networks using reinforcement learning based load balancing algorithm,” in Proceedings of the 2019 Wireless Communications and Networking Conference (WCNC).   IEEE, 2019, pp. 1–7.
  40. R. Beraldi and H. Alnuweiri, “Sequential randomization load balancing for fog computing,” in Proceedings of the 26th International Conference on Software, Telecommunications and Computer Networks (SoftCOM).   IEEE, 2018, pp. 1–6.
  41. R. Beraldi, C. Canali, R. Lancellotti, and G. Proietti Mattia, “Randomized load balancing under loosely correlated state information in fog computing,” in Proceedings of the 23rd International ACM Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems, ser. MSWiM ’20.   New York, NY, USA: Association for Computing Machinery, 2020, p. 123–127. [Online]. Available: https://doi.org/10.1145/3416010.3423244
  42. R. Beraldi and H. Alnuweiri, “Exploiting power-of-choices for load balancing in fog computing,” in Proceedings of the 2019 International Conference on Fog Computing (ICFC).   IEEE, 2019, pp. 80–86.
  43. R. Beraldi and G. Proietti Mattia, “Power of random choices made efficient for fog computing,” IEEE Transactions on Cloud Computing, pp. 1–1, 2020.
  44. R. Beraldi, C. Canali, R. Lancellotti, and G. P. Mattia, “A random walk based load balancing algorithm for fog computing,” in Proceedings of the Fifth International Conference on Fog and Mobile Edge Computing (FMEC).   IEEE, 2020, pp. 46–53.
  45. B. Roy, “ELECTRE III: Un algorithme de classements fondé sur une représentation floue des préférences en présence de criteres multiples,” Cahiers du CERO, vol. 20, no. 1, pp. 3–24, 1978.
  46. N. K. Giang, M. Blackstock, R. Lea, and V. C. Leung, “Developing IoT applications in the fog: A distributed dataflow approach,” in Proceedings of the 5th International Conference on the Internet of Things (IOT).   IEEE, 2015, pp. 155–162.
  47. M. RogerS and M. Bruen, “A new system for weighting environmental criteria for use within electre iii,” European Journal of Operational Research, vol. 107, no. 3, pp. 552–563, 1998. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0377221797001549
  48. A. Elmokashfi, A. Kvalbein, and C. Dovrolis, “On the scalability of bgp: The role of topology growth,” IEEE Journal on Selected Areas in Communications, vol. 28, no. 8, pp. 1250–1261, 2010.
  49. U. Brandes, “A faster algorithm for betweenness centrality,” The Journal of Mathematical Sociology, vol. 25, no. 2, pp. 163–177, 2001. [Online]. Available: https://doi.org/10.1080/0022250X.2001.9990249
  50. H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, and R. Buyya, “iFogSim: A toolkit for modeling and simulation of resource management techniques in the internet of things, edge and fog computing environments,” Software: Practice and Experience, vol. 47, no. 9, pp. 1275–1296, 2017. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2509
  51. J. K. Zao, T.-T. Gan, C.-K. You, C.-E. Chung, Y.-T. Wang, S. J. Rodríguez Méndez, T. Mullen, C. Yu, C. Kothe, C.-T. Hsiao, S.-L. Chu, C.-K. Shieh, and T.-P. Jung, “Pervasive brain monitoring and data sharing based on multi-tier distributed computing and linked data technology,” Frontiers in Human Neuroscience, vol. 8, p. 370, 2014. [Online]. Available: https://www.frontiersin.org/article/10.3389/fnhum.2014.00370
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Maad Ebrahim (7 papers)
  2. Abdelhakim Hafid (10 papers)
Citations (9)

Summary

We haven't generated a summary for this paper yet.