Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Annealed limit for a diffusive disordered mean-field model with random jumps (2210.13128v4)

Published 24 Oct 2022 in math.PR

Abstract: We study a sequence of $N-$particle mean-field systems, each driven by $N$ simple point processes $Z{N,i}$ in a random environment. Each $Z{N,i}$ has the same intensity $(f(XN_{t-}))_t$ and at every jump time of $Z{N,i},$ the process $XN$ does a jump of height $U_i/\sqrt{N}$ where the $U_i$ are disordered centered random variables attached to each particle. We prove the convergence in distribution of $XN$ to some limit process $\bar X$ that is solution to an SDE with a random environment given by a Gaussian variable, with a convergence speed for the finite-dimensional distributions. This Gaussian variable is created by a CLT as the limit of the patial sums of the $U_i.$ To prove this result, we use a coupling for the classical CLT relying on the result of [Koml\'os, Major and Tusn\'ady (1976)], that allows to compare the conditional distributions of $XN$ and $\bar X$ given the random environment, with the same Markovian technics as the ones used in [Erny, L\"ocherbach and Loukianova (2022)].

Summary

We haven't generated a summary for this paper yet.