Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
Gemini 2.5 Pro
GPT-5
GPT-4o
DeepSeek R1 via Azure
2000 character limit reached

An Analytical Estimation of Spiking Neural Networks Energy Efficiency (2210.13107v1)

Published 24 Oct 2022 in cs.AR

Abstract: Spiking Neural Networks are a type of neural networks where neurons communicate using only spikes. They are often presented as a low-power alternative to classical neural networks, but few works have proven these claims to be true. In this work, we present a metric to estimate the energy consumption of SNNs independently of a specific hardware. We then apply this metric on SNNs processing three different data types (static, dynamic and event-based) representative of real-world applications. As a result, all of our SNNs are 6 to 8 times more efficient than their FNN counterparts.

Citations (27)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.