Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Relatively geometric actions of Kähler groups on CAT(0) cube complexes (2210.12850v3)

Published 23 Oct 2022 in math.GR, math.CV, and math.GT

Abstract: We prove that for $n\geq 2$, a non-uniform lattice in $\text{PU}(n,1)$ does not admit a relatively geometric action on a $\mathrm{CAT}(0)$ cube complex, in the sense of Einstein and Groves. As a consequence, if $\Gamma$ is a non-uniform lattice in a non-compact semisimple Lie group $G$ without compact factors that admits a relatively geometric action on a $\mathrm{CAT}(0)$ cube complex, then $G$ is commensurable with $\text{SO}(n,1)$. We also prove that if a K\"ahler group is hyperbolic relative to residually finite parabolic subgroups, and acts relatively geometrically on a $\mathrm{CAT}(0)$ cube complex, then it is virtually a surface group.

Citations (1)

Summary

We haven't generated a summary for this paper yet.