Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

LQGNet: Hybrid Model-Based and Data-Driven Linear Quadratic Stochastic Control (2210.12803v2)

Published 23 Oct 2022 in eess.SY, cs.LG, and cs.SY

Abstract: Stochastic control deals with finding an optimal control signal for a dynamical system in a setting with uncertainty, playing a key role in numerous applications. The linear quadratic Gaussian (LQG) is a widely-used setting, where the system dynamics is represented as a linear Gaussian statespace (SS) model, and the objective function is quadratic. For this setting, the optimal controller is obtained in closed form by the separation principle. However, in practice, the underlying system dynamics often cannot be faithfully captured by a fully known linear Gaussian SS model, limiting its performance. Here, we present LQGNet, a stochastic controller that leverages data to operate under partially known dynamics. LQGNet augments the state tracking module of separation-based control with a dedicated trainable algorithm. The resulting system preserves the operation of classic LQG control while learning to cope with partially known SS models without having to fully identify the dynamics. We empirically show that LQGNet outperforms classic stochastic control by overcoming mismatched SS models.

Citations (2)

Summary

We haven't generated a summary for this paper yet.