Correcting Diverse Factual Errors in Abstractive Summarization via Post-Editing and Language Model Infilling (2210.12378v2)
Abstract: Abstractive summarization models often generate inconsistent summaries containing factual errors or hallucinated content. Recent works focus on correcting factual errors in generated summaries via post-editing. Such correction models are trained using adversarial non-factual summaries constructed using heuristic rules for injecting errors. However, generating non-factual summaries using heuristics often does not generalize well to actual model errors. In this work, we propose to generate hard, representative synthetic examples of non-factual summaries through infilling LLMs. With this data, we train a more robust fact-correction model to post-edit the summaries to improve factual consistency. Through quantitative and qualitative experiments on two popular summarization datasets -- CNN/DM and XSum -- we show that our approach vastly outperforms prior methods in correcting erroneous summaries. Our model -- FactEdit -- improves factuality scores by over ~11 points on CNN/DM and over ~31 points on XSum on average across multiple summarization models, producing more factual summaries while maintaining competitive summarization quality.
- Vidhisha Balachandran (31 papers)
- Hannaneh Hajishirzi (176 papers)
- William W. Cohen (79 papers)
- Yulia Tsvetkov (142 papers)