Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ProGen: Progressive Zero-shot Dataset Generation via In-context Feedback (2210.12329v1)

Published 22 Oct 2022 in cs.CL and cs.AI

Abstract: Recently, dataset-generation-based zero-shot learning has shown promising results by training a task-specific model with a dataset synthesized from large pre-trained LLMs (PLMs). The final task-specific model often achieves compatible or even better performance than PLMs under the zero-shot setting, with orders of magnitude fewer parameters. However, synthetic datasets have their drawbacks. They have long been suffering from low-quality issues (e.g., low informativeness and redundancy). This explains why the massive synthetic data does not lead to better performance -- a scenario we would expect in the human-labeled data. To improve the quality of dataset synthesis, we propose a progressive zero-shot dataset generation framework, ProGen, which leverages the feedback from the task-specific model to guide the generation of new training data via in-context examples. Extensive experiments on five text classification datasets demonstrate the effectiveness of the proposed approach. We also show ProGen achieves on-par or superior performance with only 1\% synthetic dataset size compared to baseline methods without in-context feedback.

Citations (56)

Summary

We haven't generated a summary for this paper yet.