Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Tuning for Metropolis Adjusted Langevin Trajectories (2210.12200v2)

Published 21 Oct 2022 in stat.CO

Abstract: Hamiltonian Monte Carlo (HMC) is a widely used sampler for continuous probability distributions. In many cases, the underlying Hamiltonian dynamics exhibit a phenomenon of resonance which decreases the efficiency of the algorithm and makes it very sensitive to hyperparameter values. This issue can be tackled efficiently, either via the use of trajectory length randomization (RHMC) or via partial momentum refreshment. The second approach is connected to the kinetic Langevin diffusion, and has been mostly investigated through the use of Generalized HMC (GHMC). However, GHMC induces momentum flips upon rejections causing the sampler to backtrack and waste computational resources. In this work we focus on a recent algorithm bypassing this issue, named Metropolis Adjusted Langevin Trajectories (MALT). We build upon recent strategies for tuning the hyperparameters of RHMC which target a bound on the Effective Sample Size (ESS) and adapt it to MALT, thereby enabling the first user-friendly deployment of this algorithm. We construct a method to optimize a sharper bound on the ESS and reduce the estimator variance. Easily compatible with parallel implementation, the resultant Adaptive MALT algorithm is competitive in terms of ESS rate and hits useful tradeoffs in memory usage when compared to GHMC, RHMC and NUTS.

Citations (4)

Summary

We haven't generated a summary for this paper yet.