Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Conservation laws with nonlocal velocity -- the singular limit problem (2210.12141v1)

Published 21 Oct 2022 in math.AP

Abstract: We consider conservation laws with nonlocal velocity and show for nonlocal weights of exponential type that the unique solutions converge in a weak or strong sense (dependent on the regularity of the velocity) to the entropy solution of the local conservation law when the nonlocal weight approaches a Dirac distribution. To this end, we establish first a uniform total variation estimate on the nonlocal velocity which enables it to prove that the nonlocal solution is entropy admissible in the limit. For the entropy solution, we use a tailored entropy flux pair which allows the usage of only one entropy to obtain uniqueness (given some additional constraints). For general weights, we show that monotonicity of the initial datum is preserved over time which enables it to prove the convergence to the local entropy solution for rather general kernels and monotone initial datum as well. This covers the archetypes of local conservation laws: Shock waves and rarefactions. It also underlines that a ``nonlocal in the velocity'' approximation might be better suited to approximate local conservation laws than a nonlocal in the solution approximation where such monotonicity does only hold for specific velocities.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.