Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Clip-Tuning: Towards Derivative-free Prompt Learning with a Mixture of Rewards (2210.12050v1)

Published 21 Oct 2022 in cs.CL

Abstract: Derivative-free prompt learning has emerged as a lightweight alternative to prompt tuning, which only requires model inference to optimize the prompts. However, existing work did not take full advantage of the over-parameterized characteristics of large pre-trained LLMs (PLMs). In this paper, we propose Clip-Tuning, a simple yet effective method that adopts diverse frozen "thinned" networks of PLMs to obtain a mixture of rewards and thus advance the derivative-free prompt learning. The thinned networks consist of all the hidden units that survive a stationary dropout strategy, whose inference predictions reflect an ensemble of partial views over prompted training samples. Our method outperforms previous gradient-free prompt learning methods and achieves parity with gradient-based counterparts on seven language understanding benchmarks under few-shot settings.

Citations (17)

Summary

We haven't generated a summary for this paper yet.