Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Submodular Optimization under Noise: Local Search is Robust (2210.11992v1)

Published 21 Oct 2022 in cs.DS

Abstract: The problem of monotone submodular maximization has been studied extensively due to its wide range of applications. However, there are cases where one can only access the objective function in a distorted or noisy form because of the uncertain nature or the errors involved in the evaluation. This paper considers the problem of constrained monotone submodular maximization with noisy oracles introduced by [Hassidim et al., 2017]. For a cardinality constraint, we propose an algorithm achieving a near-optimal $\left(1-\frac{1}{e}-O(\varepsilon)\right)$-approximation guarantee (for arbitrary $\varepsilon > 0$) with only a polynomial number of queries to the noisy value oracle, which improves the exponential query complexity of [Singer et al., 2018]. For general matroid constraints, we show the first constant approximation algorithm in the presence of noise. Our main approaches are to design a novel local search framework that can handle the effect of noise and to construct certain smoothing surrogate functions for noise reduction.

Citations (2)

Summary

We haven't generated a summary for this paper yet.