Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Men Also Do Laundry: Multi-Attribute Bias Amplification (2210.11924v3)

Published 21 Oct 2022 in cs.CV, cs.AI, and cs.LG

Abstract: As computer vision systems become more widely deployed, there is increasing concern from both the research community and the public that these systems are not only reproducing but amplifying harmful social biases. The phenomenon of bias amplification, which is the focus of this work, refers to models amplifying inherent training set biases at test time. Existing metrics measure bias amplification with respect to single annotated attributes (e.g., $\texttt{computer}$). However, several visual datasets consist of images with multiple attribute annotations. We show models can learn to exploit correlations with respect to multiple attributes (e.g., {$\texttt{computer}$, $\texttt{keyboard}$}), which are not accounted for by current metrics. In addition, we show current metrics can give the erroneous impression that minimal or no bias amplification has occurred as they involve aggregating over positive and negative values. Further, these metrics lack a clear desired value, making them difficult to interpret. To address these shortcomings, we propose a new metric: Multi-Attribute Bias Amplification. We validate our proposed metric through an analysis of gender bias amplification on the COCO and imSitu datasets. Finally, we benchmark bias mitigation methods using our proposed metric, suggesting possible avenues for future bias mitigation

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Dora Zhao (17 papers)
  2. Jerone T. A. Andrews (11 papers)
  3. Alice Xiang (28 papers)
Citations (15)

Summary

We haven't generated a summary for this paper yet.