Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-view Semantic Matching of Question retrieval using Fine-grained Semantic Representations (2210.11806v2)

Published 21 Oct 2022 in cs.IR

Abstract: As a key task of question answering, question retrieval has attracted much attention from the communities of academia and industry. Previous solutions mainly focus on the translation model, topic model, and deep learning techniques. Distinct from the previous solutions, we propose to construct fine-grained semantic representations of a question by a learned importance score assigned to each keyword, so that we can achieve a fine-grained question matching solution with these semantic representations of different lengths. Accordingly, we propose a multi-view semantic matching model by reusing the important keywords in multiple semantic representations. As a key of constructing fine-grained semantic representations, we are the first to use a cross-task weakly supervised extraction model that applies question-question labelled signals to supervise the keyword extraction process (i.e. to learn the keyword importance). The extraction model integrates the deep semantic representation and lexical matching information with statistical features to estimate the importance of keywords. We conduct extensive experiments on three public datasets and the experimental results show that our proposed model significantly outperforms the state-of-the-art solutions.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Li Chong (1 paper)
  2. Denghao Ma (1 paper)
  3. Yueguo Chen (11 papers)

Summary

We haven't generated a summary for this paper yet.