On smooth interior approximation of Sets of Finite Perimeter (2210.11734v2)
Abstract: In this paper, we prove that for any bounded set of finite perimeter $\Omega \subset \mathbb{R}n$, we can choose smooth sets $E_k \Subset \Omega$ such that $E_k \rightarrow \Omega$ in $L1$ and \begin{align} \label{moregeneralapproximation} \limsup_{i \rightarrow \infty} P(E_i) \le P(\Omega)+C_1(n) \mathscr{H}{n-1}(\partial \Omega \cap \Omega1). \end{align}In the above $\Omega1$ is the measure-theoretic interior of $\Omega$, $P(\cdot)$ denotes the perimeter functional on sets, and $C_1(n)$ is a dimensional constant. Conversely, we prove that for any sets $E_k \Subset \Omega$ satisfying $E_k \rightarrow \Omega$ in $L1$, there exists a dimensional constant $C_2(n)$ such that the following inequality holds: \begin{align} \label{gap} \liminf_{k \rightarrow \infty} P(E_k) \ge P(\Omega)+ C_2(n) \mathscr{H}{n-1}(\partial \Omega \cap \Omega1). \end{align} In particular, these results imply that for a bounded set $\Omega$ of finite perimeter,\begin{align} \label{char*} \mathscr{H}{n-1}(\partial \Omega \cap \Omega1)=0 \end{align} holds if and only if there exists a sequence of smooth sets $E_k$ such that $E_k \Subset \Omega$, $E_k \rightarrow \Omega$ in $L1$ and $P(E_k) \rightarrow P(\Omega)$.