Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Model-matching Principle Applied to the Design of an Array-based All-neural Binaural Rendering System for Audio Telepresence (2210.11123v2)

Published 20 Oct 2022 in eess.AS and cs.SD

Abstract: Telepresence aims to create an immersive but virtual experience of the audio and visual scene at the far end for users at the near end. In this contribution, we propose an array-based binaural rendering system that converts the array microphone signals into the head-related transfer function (HRTF) filtered output signals for headphone-rendering. The proposed approach is formulated in light of a model-matching principle (MMP) and is capable of delivering more immersive experience than the conventional localization-beamforming-HRTF filtering (LBH) approach. The MMP-based rendering system can be realized via multichannel inverse filtering (MIF) and multichannel deep filtering (MDF). In this study, we adopted the MDF approach and used the LBH as well as MIF as the baselines. The all-neural system jointly captures the spatial information (spatial rendering), preserves ambient sound (enhancement), and reduces noise (enhancement) before generating binaural outputs. Objective and subjective tests are employed to compare the proposed telepresence system with two baselines.

Citations (4)

Summary

We haven't generated a summary for this paper yet.