Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Learning Based Stage-wise Two-dimensional Speaker Localization with Large Ad-hoc Microphone Arrays (2210.10265v2)

Published 19 Oct 2022 in eess.AS and cs.SD

Abstract: While deep-learning-based speaker localization has shown advantages in challenging acoustic environments, it often yields only direction-of-arrival (DOA) cues rather than precise two-dimensional (2D) coordinates. To address this, we propose a novel deep-learning-based 2D speaker localization method leveraging ad-hoc microphone arrays, where an ad-hoc microphone array is composed of randomly distributed microphone nodes, each of which is equipped with a traditional array. Specifically, we first employ convolutional neural networks at each node to estimate speaker directions. Then, we integrate these DOA estimates using triangulation and clustering techniques to get 2D speaker locations. To further boost the estimation accuracy, we introduce a node selection algorithm that strategically filters the most reliable nodes. Extensive experiments on both simulated and real-world data demonstrate that our approach significantly outperforms conventional methods. The proposed node selection further refines performance. The real-world dataset in the experiment, named Libri-adhoc-node10 which is a newly recorded data described for the first time in this paper, is online available at https://github.com/Liu-sp/Libri-adhoc-nodes10.

Citations (3)

Summary

We haven't generated a summary for this paper yet.