Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-Source Transformer Architectures for Audiovisual Scene Classification (2210.10212v1)

Published 18 Oct 2022 in eess.AS, cs.CV, cs.SD, and eess.IV

Abstract: In this technical report, the systems we submitted for subtask 1B of the DCASE 2021 challenge, regarding audiovisual scene classification, are described in detail. They are essentially multi-source transformers employing a combination of auditory and visual features to make predictions. These models are evaluated utilizing the macro-averaged multi-class cross-entropy and accuracy metrics. In terms of the macro-averaged multi-class cross-entropy, our best model achieved a score of 0.620 on the validation data. This is slightly better than the performance of the baseline system (0.658). With regard to the accuracy measure, our best model achieved a score of 77.1\% on the validation data, which is about the same as the performance obtained by the baseline system (77.0\%).

Summary

We haven't generated a summary for this paper yet.