Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Information-theoretic Characterizations of Generalization Error for the Gibbs Algorithm (2210.09864v1)

Published 18 Oct 2022 in cs.IT and math.IT

Abstract: Various approaches have been developed to upper bound the generalization error of a supervised learning algorithm. However, existing bounds are often loose and even vacuous when evaluated in practice. As a result, they may fail to characterize the exact generalization ability of a learning algorithm. Our main contributions are exact characterizations of the expected generalization error of the well-known Gibbs algorithm (a.k.a. Gibbs posterior) using different information measures, in particular, the symmetrized KL information between the input training samples and the output hypothesis. Our result can be applied to tighten existing expected generalization error and PAC-Bayesian bounds. Our information-theoretic approach is versatile, as it also characterizes the generalization error of the Gibbs algorithm with a data-dependent regularizer and that of the Gibbs algorithm in the asymptotic regime, where it converges to the standard empirical risk minimization algorithm. Of particular relevance, our results highlight the role the symmetrized KL information plays in controlling the generalization error of the Gibbs algorithm.

Citations (14)

Summary

We haven't generated a summary for this paper yet.