Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Improved Structured Mesh Generation Method Based on Physics-informed Neural Networks (2210.09546v1)

Published 18 Oct 2022 in cs.GR, cs.LG, and physics.flu-dyn

Abstract: Mesh generation remains a key technology in many areas where numerical simulations are required. As numerical algorithms become more efficient and computers become more powerful, the percentage of time devoted to mesh generation becomes higher. In this paper, we present an improved structured mesh generation method. The method formulates the meshing problem as a global optimization problem related to a physics-informed neural network. The mesh is obtained by intelligently solving the physical boundary-constrained partial differential equations. To improve the prediction accuracy of the neural network, we also introduce a novel auxiliary line strategy and an efficient network model during meshing. The strategy first employs a priori auxiliary lines to provide ground truth data and then uses these data to construct a loss term to better constrain the convergence of the subsequent training. The experimental results indicate that the proposed method is effective and robust. It can accurately approximate the mapping (transformation) from the computational domain to the physical domain and enable fast high-quality structured mesh generation.

Citations (4)

Summary

We haven't generated a summary for this paper yet.