Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

APGKT: Exploiting Associative Path on Skills Graph for Knowledge Tracing (2210.08971v1)

Published 5 Oct 2022 in cs.CY and cs.LG

Abstract: Knowledge tracing (KT) is a fundamental task in educational data mining that mainly focuses on students' dynamic cognitive states of skills. The question-answering process of students can be regarded as a thinking process that considers the following two problems. One problem is which skills are needed to answer the question, and the other is how to use these skills in order. If a student wants to answer a question correctly, the student should not only master the set of skills involved in the question but also think and obtain the associative path on the skills graph. The nodes in the associative path refer to the skills needed and the path shows the order of using them. The associative path is referred to as the skill mode. Thus, obtaining the skill modes is the key to answering questions successfully. However, most existing KT models only focus on a set of skills, without considering the skill modes. We propose a KT model, called APGKT, that exploits skill modes. Specifically, we extract the subgraph topology of the skills involved in the question and combine the difficulty level of the skills to obtain the skill modes via encoding; then, through multi-layer recurrent neural networks, we obtain a student's higher-order cognitive states of skills, which is used to predict the student's future answering performance. Experiments on five benchmark datasets validate the effectiveness of the proposed model.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Haotian Zhang (107 papers)
  2. Chenyang Bu (3 papers)
  3. Fei Liu (232 papers)
  4. Shuochen Liu (3 papers)
  5. Yuhong Zhang (27 papers)
  6. Xuegang Hu (8 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.