Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Combination Of Convolution Neural Networks And Deep Neural Networks For Fake News Detection (2210.08331v1)

Published 15 Oct 2022 in cs.IR and cs.CL

Abstract: Nowadays, People prefer to follow the latest news on social media, as it is cheap, easily accessible, and quickly disseminated. However, it can spread fake or unreliable, low-quality news that intentionally contains false information. The spread of fake news can have a negative effect on people and society. Given the seriousness of such a problem, researchers did their best to identify patterns and characteristics that fake news may exhibit to design a system that can detect fake news before publishing. In this paper, we have described the Fake News Challenge stage #1 (FNC-1) dataset and given an overview of the competitive attempts to build a fake news detection system using the FNC-1 dataset. The proposed model was evaluated with the FNC-1 dataset. A competitive dataset is considered an open problem and a challenge worldwide. This system's procedure implies processing the text in the headline and body text columns with different natural language processing techniques. After that, the extracted features are reduced using the elbow truncated method, finding the similarity between each pair using the soft cosine similarity method. The new feature is entered into CNN and DNN deep learning approaches. The proposed system detects all the categories with high accuracy except the disagree category. As a result, the system achieves up to 84.6 % accuracy, classifying it as the second ranking based on other competitive studies regarding this dataset.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Zainab A. Jawad (1 paper)
  2. Ahmed J. Obaid (2 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.