Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hierarchical Decentralized Deep Reinforcement Learning Architecture for a Simulated Four-Legged Agent (2210.08003v1)

Published 21 Sep 2022 in cs.AI, cs.LG, and cs.RO

Abstract: Legged locomotion is widespread in nature and has inspired the design of current robots. The controller of these legged robots is often realized as one centralized instance. However, in nature, control of movement happens in a hierarchical and decentralized fashion. Introducing these biological design principles into robotic control systems has motivated this work. We tackle the question whether decentralized and hierarchical control is beneficial for legged robots and present a novel decentral, hierarchical architecture to control a simulated legged agent. Three different tasks varying in complexity are designed to benchmark five architectures (centralized, decentralized, hierarchical and two different combinations of hierarchical decentralized architectures). The results demonstrate that decentralizing the different levels of the hierarchical architectures facilitates learning of the agent, ensures more energy efficient movements as well as robustness towards new unseen environments. Furthermore, this comparison sheds light on the importance of modularity in hierarchical architectures to solve complex goal-directed tasks. We provide an open-source code implementation of our architecture (https://github.com/wzaielamri/hddrl).

Citations (1)

Summary

We haven't generated a summary for this paper yet.