Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Training speech emotion classifier without categorical annotations (2210.07642v1)

Published 14 Oct 2022 in cs.SD, cs.CL, cs.HC, cs.LG, and eess.AS

Abstract: There are two paradigms of emotion representation, categorical labeling and dimensional description in continuous space. Therefore, the emotion recognition task can be treated as a classification or regression. The main aim of this study is to investigate the relation between these two representations and propose a classification pipeline that uses only dimensional annotation. The proposed approach contains a regressor model which is trained to predict a vector of continuous values in dimensional representation for given speech audio. The output of this model can be interpreted as an emotional category using a mapping algorithm. We investigated the performances of a combination of three feature extractors, three neural network architectures, and three mapping algorithms on two different corpora. Our study shows the advantages and limitations of the classification via regression approach.

Citations (2)

Summary

We haven't generated a summary for this paper yet.