Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Caption supervision enables robust learners (2210.07396v2)

Published 13 Oct 2022 in cs.CV

Abstract: Vision language (VL) models like CLIP are robust to natural distribution shifts, in part because CLIP learns on unstructured data using a technique called caption supervision; the model inteprets image-linked texts as ground-truth labels. In a carefully controlled comparison study, we show that caption-supervised CNNs trained on a standard cross-entropy loss (with image labels assigned by scanning captions for class names) can exhibit greater distributional robustness than VL models trained on the same data. To facilitate future experiments with high-accuracy caption-supervised models, we introduce CaptionNet (https://github.com/penfever/CaptionNet/), which includes a class-balanced, fully supervised dataset with over 50,000 new human-labeled ImageNet-compliant samples which includes web-scraped captions. In a series of experiments on CaptionNet, we show how the choice of loss function, data filtration and supervision strategy enable robust computer vision. We also provide the codebase necessary to reproduce our experiments at VL Hub (https://github.com/penfever/vlhub/).

Citations (2)

Summary

We haven't generated a summary for this paper yet.