Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Smooth Calibration, Leaky Forecasts, Finite Recall, and Nash Dynamics (2210.07152v1)

Published 13 Oct 2022 in econ.TH, cs.GT, cs.LG, math.ST, stat.ML, and stat.TH

Abstract: We propose to smooth out the calibration score, which measures how good a forecaster is, by combining nearby forecasts. While regular calibration can be guaranteed only by randomized forecasting procedures, we show that smooth calibration can be guaranteed by deterministic procedures. As a consequence, it does not matter if the forecasts are leaked, i.e., made known in advance: smooth calibration can nevertheless be guaranteed (while regular calibration cannot). Moreover, our procedure has finite recall, is stationary, and all forecasts lie on a finite grid. To construct the procedure, we deal also with the related setups of online linear regression and weak calibration. Finally, we show that smooth calibration yields uncoupled finite-memory dynamics in n-person games "smooth calibrated learning" in which the players play approximate Nash equilibria in almost all periods (by contrast, calibrated learning, which uses regular calibration, yields only that the time-averages of play are approximate correlated equilibria).

Citations (26)

Summary

We haven't generated a summary for this paper yet.