Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Soft isogeometric analysis of the Bound States of a Quantum Three-Body Problem in 1D (2210.06832v2)

Published 13 Oct 2022 in math.NA, cs.NA, and physics.comp-ph

Abstract: The study of quantum three-body problems has been centered on low-energy states that rely on accurate numerical approximation. Recently, isogeometric analysis (IGA) has been adopted to solve the problem as an alternative but more robust (with respect to atom mass ratios) method that outperforms the classical Born-Oppenheimer (BO) approximation. In this paper, we focus on the performance of IGA and apply the recently-developed softIGA to reduce the spectral errors of the low-energy bound states. The main idea is to add high-order derivative-jump terms with a penalty parameter to the IGA bilinear forms. With an optimal choice of the penalty parameter, we observe eigenvalue error superconvergence. We focus on linear (finite elements) and quadratic elements and demonstrate the outperformance of softIGA over IGA through a variety of examples including both two- and three-body problems in 1D.

Citations (1)

Summary

We haven't generated a summary for this paper yet.