Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Low-resource Neural Machine Translation with Cross-modal Alignment (2210.06716v1)

Published 13 Oct 2022 in cs.CL

Abstract: How to achieve neural machine translation with limited parallel data? Existing techniques often rely on large-scale monolingual corpora, which is impractical for some low-resource languages. In this paper, we turn to connect several low-resource languages to a particular high-resource one by additional visual modality. Specifically, we propose a cross-modal contrastive learning method to learn a shared space for all languages, where both a coarse-grained sentence-level objective and a fine-grained token-level one are introduced. Experimental results and further analysis show that our method can effectively learn the cross-modal and cross-lingual alignment with a small amount of image-text pairs and achieves significant improvements over the text-only baseline under both zero-shot and few-shot scenarios.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Zhe Yang (60 papers)
  2. Qingkai Fang (19 papers)
  3. Yang Feng (230 papers)
Citations (8)