Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Transferable Learning on Analog Hardware (2210.06632v1)

Published 12 Oct 2022 in cs.ET and physics.optics

Abstract: While analog neural network (NN) accelerators promise massive energy and time savings, an important challenge is to make them robust to static fabrication error. Present-day training methods for programmable photonic interferometer circuits, a leading analog NN platform, do not produce networks that perform well in the presence of static hardware errors. Moreover, existing hardware error correction techniques either require individual re-training of every analog NN (which is impractical in an edge setting with millions of devices), place stringent demands on component quality, or introduce hardware overhead. We solve all three problems by introducing one-time error-aware training techniques that produce robust NNs that match the performance of ideal hardware and can be exactly transferred to arbitrary highly faulty photonic NNs with hardware errors up to 5x larger than present-day fabrication tolerances.

Citations (13)

Summary

We haven't generated a summary for this paper yet.