Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Iterative Document-level Information Extraction via Imitation Learning (2210.06600v3)

Published 12 Oct 2022 in cs.CL

Abstract: We present a novel iterative extraction model, IterX, for extracting complex relations, or templates (i.e., N-tuples representing a mapping from named slots to spans of text) within a document. Documents may feature zero or more instances of a template of any given type, and the task of template extraction entails identifying the templates in a document and extracting each template's slot values. Our imitation learning approach casts the problem as a Markov decision process (MDP), and relieves the need to use predefined template orders to train an extractor. It leads to state-of-the-art results on two established benchmarks -- 4-ary relation extraction on SciREX and template extraction on MUC-4 -- as well as a strong baseline on the new BETTER Granular task.

Citations (10)

Summary

We haven't generated a summary for this paper yet.